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Stationary states of hybrid aligned flexoelectric nematic layers

GRZEGORZ DERFEL*

Institute of Physics, Technical University of Łódź, ul. Wólczańska 219, 90-924 Łódź, Poland

(Received 23 April 2007; in final form 13 August 2007; accepted 14 August 2007 )

Nematic layers, with planar anchoring conditions on one boundary plate and homeotropic
anchoring conditions on the other, subjected to an external electric field may adopt planar,
distorted or homeotropic structure depending on the anchoring strength and dielectric
anisotropy. The influence of flexoelectric properties on stability of the planar and
homeotropic structures with respect to small distortions is studied. The case of a positive
sum of the flexoelectric coefficients e.0 is considered under the assumption that the
anchoring strength on the planar wall, W1, is greater than that on the homeotropic boundary,
W2. In the presence of flexoelectricity, one sign of the bias voltage U is distinguished. In the
case considered, the planar and homeotropic structures are favoured if the higher electric
potential is applied to the homeotropically aligning electrode. If the applied voltage has the
reverse sign, the distorted structure prevails. In a flexoelectric nematic possessing positive
dielectric anisotropy, De.0, the planar structure may exist in thicker layers and in a wider
range of voltages than in the non-flexoelectric nematic. The homeotropic state is favoured by
weak flexoelectricity, i.e. the range of thickness in which this state is stable at given voltage is
wider than in the non-flexoelectric case. For moderate values of e, the homeotropic state
appears for a range of thickness that increases with U but narrows with increasing e. When
the flexoelectric properties are too strong, i.e. when e exceeds a critical value dependent on
W1/W2, the homeotropic structure is excluded. If De(0, the planar structure is realized if the
thickness belongs to some range the width of which increases with U. The homeotropic state
does not occur. These results, obtained for the insulating nematics, are valid quantitatively
also for the case of conducting nematics only if the ion concentration is smaller than ca.
561018 m23. A method of measurement of e based on the above results is proposed. The
examples of representative transitions between the planar, distorted and homeotropic
structures obtained numerically are presented. Possible advantages of hybrid aligned
flexoelectric nematic layers for display applications are discussed.

1. Introduction

Liquid crystal layers confined between transparent

electrodes are basic components of liquid crystal devices

of any type. They serve also as samples commonly used

in fundamental research on liquid crystals. The hybrid

aligned nematic (HAN) layer belongs to the most often

investigated liquid crystalline systems. In this geometry,

the inner surfaces of the cell are suitably prepared in

order to obtain specific directions of the easy axes, i.e.

of the preferred orientations adopted by the director n

when it is aligned only by the interaction with the

substrate. On one surface, the planar alignment is

imposed (i.e. the easy axis e1 is parallel to the substrate)

whereas on the other surface the easy axis e2 has the

homeotropic orientation (i.e. perpendicular to the

substrate). If the layer is not subjected to any external

interaction, the director undergoes a smooth tilt from

one surface to the other. Its orientation on the surfaces

may deviate from the strictly planar or strictly home-

otropic if the anchoring energies are small. Such

director distribution contains splay and bend deforma-

tions. External electric or magnetic fields influence the

director distribution and change the optical properties

of the layer. The electro-optical effect in the HAN layer

was proposed for display applications 30 years ago [1].

It offers fast thresholdless response to the bias voltage.

Calculations based on the elastic continuum theory

[2, 3] show that when the planar and homeotropic

anchoring strengths, (denoted here by W1 and W2,

respectively) are not equal, there is a critical layer

thickness, dc, below which the director field throughout

the layer adopts the uniform orientation imposed by the

stronger anchoring. If the layer is sufficiently thick or if

W15W2, the distorted director distribution described

above occurs.

The main contribution deciding on the behaviour of

the HAN layer in the external electric field is the bulk* Email: gderfel@p.lodz.pl
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torque due to the dielectric anisotropy, De. Deformation

of dielectric nature is a quadratic effect and therefore

does not depend on the sign of the voltage. However the

nematic materials usually possess flexoelectric proper-

ties due to asymmetric shape and dipolar nature of

mesogenic molecules [4]. Flexoelectricity manifests itself

by an electric polarization whenever the director

distribution contains splay or bend (which is called

the direct flexoelectric effect), as well as by deformation

resulting from the interaction between the flexoelectric

polarization and the applied electric field (which is

known as the converse flexoelectric effect). In both

cases, the coupling of the field with the flexoelectric

polarization is linear. The field effects depend therefore

on the sign of the bias voltage. The flexoelectric

properties are described by two flexoelectric coeffi-

cients, e11 and e33, which determine the relationship

between the deformation of the nematic and the electric

polarization P5e11n(,?n)2e33n6(,6n). Their values

are of the order of pC m21 and are difficult to measure

(for a review, see Petrov [5]). The role of flexoelectricity

in the behaviour of liquid crystal systems has been

investigated by many authors. Flexoelectric properties

are evident in experiments performed with HAN layers

[6, 7] and should be taken into account in interpretation

of the experimental results [8, 9]. They also play a

crucial role in the zenithal bistable device (ZBD)

displays in which the hybrid structure arises as one of

the stable states [10, 11]. The HAN layers are also often

used in experiments carried out to determine the

flexoelectric coefficients [7, 12, 13].

The behaviour of the non-flexoelectric hybrid aligned

layer under the action of an external electric field was

described theoretically by Barbero and co-workers [2,

3] for the case of a negative dielectric anisotropy and

prevailing homeotropic anchoring strength, W2>W1.

They determined the ranges of thickness and of the

electric field strengths in which the planar and home-

otropic states are stable. They found that in the absence

of the field the homeotropic structure is stable if the

layer is thinner than dc5L22L1, where L15k33/W1 and

L25k33/W2 are the extrapolation lengths and k33 is the

bending elastic constant. Above dc the distorted

structure occurs. The homeotropic state existing in

the thin layer is destroyed if the critical field is

exceeded. Sufficiently high electric field induces the

planar structure. If W15W25W, the homeotropic state

cannot exist and the planar state arises above the

electric field strength given by E5(W/k33)[k33/(e0|De|)]1/2,

where e0 is the permittivity of free space. Analogous

results can be expected in the case of De.0 and

W2(W1. The planar structure is replaced by the

homeotropic alignment and vice versa. The corresponding

formulae can be obtained if k33 is replaced by the splay

elastic constant k11.

In this paper, the hybrid aligned flexoelectric nematic

(HAFN) layer subjected to an electric field is studied

theoretically. The role of the flexoelectricity in the

stability of the planar and homeotropic structures is

determined. Prevailing planar anchoring strength,

W1>W2, was assumed. Both signs of the dielectric

anisotropy as well as the case of a dielectrically

compensated nematic, De50, were considered. Since

the director is restricted to a plane perpendicular to the

layer and the electric field is also normal to the layer,

only the sum of the flexoelectric coefficients e5e11+e33 is

essential [14]. A positive sign for e was assumed. The

thickness, d, and voltage, U, were chosen as control

parameters. The ranges of stability of the planar and

homeotropic states in the U,d-plane are determined.

The main results can be briefly summarized as

follows. In a layer of a flexoelectric nematic possessing

positive dielectric anisotropy, De.0, flexoelectricity

favours the occurrence of planar structure in some

range of positive voltages. The planar states may be

induced in much thicker layers than in the case of a non-

flexoelectric nematic. On the other hand, flexoelectricity

narrows the range of voltages in which the homeotropic

state is stable. If the flexoelectric properties are too

strong, the homeotropic state becomes unstable. In a

nematic layer characterized by De(0, the homeotropic

state does not occur. The influence of flexoelectric

properties manifests itself by a shift of the voltage

range, in which the planar structure exists, towards the

lower values.

Additional numerical simulations of the HAFN

layers were performed for nematics containing ions.

These showed that the theoretical results obtained for

insulating nematics can be applied to the case of real

conducting nematics only if the ion concentration is of

the order 561018 m23 or lower. This statement allows

an alternative method of measurement of the flexo-

electric coefficients to be proposed.

The paper is organized as follows. In section 2, the

assumptions and geometry of the system under con-

sideration are described. In section 3, the case of De.0

is considered. In section 3.1, the applied approach is

described and the stability of the planar state is

analysed. Section 3.2 concerns the stability of the

homeotropic structure. Sections 4 and 5 are devoted

to the stability of the planar structure in the cases of

De,0 and De50, respectively. Section 6 presents

examples of the transitions between planar, distorted

and homeotropic states found by means of numerical

simulations. Section 7 is devoted to discussion of the

results.
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2. Assumptions and geometry of the system

A hybrid aligned flexoelectric nematic layer of thickness

d is considered. The nematic liquid crystal is confined

between two infinite plates, which play the role of

electrodes and are parallel to the x,y-plane of the

Cartesian coordinate system and positioned at z50 and

z5d. A voltage U is applied between them; the lower

electrode (z50) was earthed. The director bnn is parallel to

the y,z-plane. Hybrid boundary conditions were

assumed with planar orientation of the easy axis

e1(0,1,0) at z50 and homeotropic orientation of

e2(0,0,1) at z5d. The planar anchoring strength W1

was assumed to be greater than the homeotropic

anchoring strength W2 or equal to W2. The model

substance was characterized by the positive sum of the

flexoelectric coefficients, e5e11+e33. Both signs of

dielectric anisotropy, De, as well as the case of De50

were taken into account. Fixed elastic constants,

k1156.2 pN and k3358.6 pN, were used in all the

numerical examples given in the following. The

theoretical analysis was performed ignoring the pre-

sence of ions in the nematic material. The role of the

ionic charge is discussed on the basis of preliminary

numerical calculations.

3. Positive dielectric anisotropy

In the case of a positive dielectric anisotropy, the

dielectric torque may lead to the homeotropic structure.

The planar structure is stable in the absence of the field

and its occurrence in the presence of weak fields is also

plausible. Therefore stability of each of these states

should be analysed.

3.1. Stability of the planar structure in the case of a
positive dielectric anisotropy

In this section, the director orientation is described by

means of the angle h measured between the director and

the y axis. The volume free energy density is given by

the formula

gv~
1

2
k33 sin2 hzk11 cos2 h
� � dh

dz

� �2

{
1

2
e0 e\zDe sin2 h
� � dV

dz

� �2

z
e

2
sin 2h

dh

dz

dV

dz
, ð1Þ

where V is the electric potential. The anchoring energy

on the planar wall is assumed to be in the form

gs1~{
1

2
W1 cos2 h 0ð Þ ð2Þ

and on the homeotropic wall in the form

gs2~{
1

2
W2 sin2 h dð Þ: ð3Þ

The torque equation for the bulk reads

1

2
k33{k11ð Þsin 2h

dh

dz

� �2

z k33 sin2 hzk11 cos2 h
� � d2h

dz2

z
1

2
e0De sin 2h

dV

dz

� �2

z
e

2
sin 2h

d2V

dz2

 !

~0:

ð4Þ

The boundary conditions for h are expressed by the

surface torque equations

{
e

2
sin 2h 0ð Þð ÞdV

dz

�

�

�

�

0

{ k33 sin2 h 0ð Þzk11 cos2 h 0ð Þ
� �dh

dz

�

�

�

�

0

z
1

2
W1 sin 2h 0ð Þð Þ~0 ð5Þ

e

2
sin 2h dð Þð ÞdV

dz

�

�

�

�

d

z k33 sin2 h dð Þzk11 cos2 h dð Þ
� �dh

dz

�

�

�

�

d

{
1

2
W2 sin 2h dð Þð Þ~0: ð6Þ

The structure of the layer is also determined by the

electrostatic equation

e0 e\zDe sin2 h
� � d2V

dz2
ze0De sin 2h

dV

dz

dh

dz

{e cos 2h
dh

dz

� �2

{
e

2
sin 2h

d2h

dz2
~0, ð7Þ

with the boundary conditions for the electric potential

V(0)50 and V(d)5U.

In order to study the stability of the planar state in

the HAFN layer, small distortions described by h%1

should be considered. With this approximation, the

bulk torque equation (4) takes the linearized form

d2h

dz2
zk2h~0, ð8Þ

where k5(U/d)(e0De/k11)1/2. The electrostatic equa-

tion (7) reduces to d2V/dz250, which is also used in

derivation of equation (8). The solution of equation (8)

has the form

h zð Þ~A cos kzð ÞzB sin kzð Þ, ð9Þ

where A and B are the integration constants. The planar
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state is determined by A50 and B50. Its stability with

respect to small deformations described by the solution of

equation (9) will be studied. For this purpose, the free

energy per unit area of the layer is expressed as a function

of A and B. According to the assumption h%1, only the

quadratic terms in A and B are retained. In this approxi-

mation, the volume free energy density has the form

gv~
1

2
k11k2

B2{A2
� �

cos 2kzð Þzf sin 2kzð Þð Þ
�

zAB f cos 2kzð Þ{sin 2kzð Þð Þ�,

ð10Þ

where f5e(k11e0De)21/2. The surface anchoring energies are

gs1~{ 1
2

W1 1{A2
� �

at z50, and

gs2~{ 1
2

W2 A2 cos2 kdzAB sin 2kdzB2 sin2 kd
� �

at

z5d. The total free energy per unit area of the layer is

given by

G~
1

2
A2k11 {ksc{f ks2z1=L1{c2

�

L2

� �

zABk11 {ks2zf ksc{sc=L2

� �

z
1

2
B2k11 ksczf ks2{s2

�

L2

� �

,

ð11Þ

where Li5k11/Wi.0 are the extrapolation lengths and the

abbreviations sin kd5s and cos kd5c are introduced. In

practice, the electric field arises due to the external voltage,

U, applied between the electrodes, which are also the walls

of the layer. This means that the bias voltage plays the role

of a control parameter. Therefore, it is useful to determine

the range of existence of the planar state in the U,d-plane.

For this reason, in the following, k is replaced by u/d,

which gives s5sin u and c5cos u, where u5U(e0De/k11)
1/2 is

the dimensionless voltage.

The planar state is stable if the function G has a

minimum for A50 and B50. The stability condition is

expressed by two inequalities

L2G
�

LA2
� �

L2G
�

LB2
� �

{ L2G
�

LALB
� �2

w0 ð12Þ

and

L2G
�

LB2
w0: ð13Þ

Solutions of these inequalities should satisfy the

additional obvious condition

dw0: ð14Þ

Condition (12) reads

{d2zdu f L2zL1ð Þz L2{L1ð Þcot u½ �
{u2 1zf 2

� �

L1L2w0: ð15Þ

This quadratic inequality gives a relationship between
the thickness of the layer and the bias voltage included

in the parameter u. For given U, equation (15) is

satisfied if

dz
1 vdvd{

1 , ð16Þ

where

d+
1 ~ {b+D1=2

� 	.

2að Þ ð17Þ

with a521, b5u[f(L2+L1)+(L22L1)cot u], c5

2u2(1+f 2)L1L2 and D5b224ac.

Condition (13) takes the form

{dzuL2 cot uzfð Þw0, ð18Þ

which is equivalent to equation (15) if L150. Its solution

is determined by

dvuL2 cot uzfð Þ:d2: ð19Þ

Comparison of equations (17) and (19) shows that

d2wd{
1 (see appendix). This means that whenever

inequality (12) is true, condition (13) is also satisfied.

The superposition of equations (18) and (15) is identical
with equation (15), which therefore yields the condition

sufficient for stability of the planar state. Equation (17)

gives two branches of the curve surrounding the region

in the U,d-plane in which the planar state exists.

In general, an explicit form of equation (17) is not
very useful because of its complexity. The same

concerns the condition D50, which in principle allows

determination of the range of U in which solutions to

equation (16) exist. Simple analytical expressions can be

obtained only in several particular cases:

(i) L15L2: if the anchoring strengths on the planar

and homeotropic walls are identical, then D,0.

This means that inequality (12) has no solution,

i.e. the planar state does not exist.

(ii) L150: the results obtained for the case of a rigid

planar anchoring are identical with equations (19)

and (14): d{
1 ~uL2 cot uzfð Þ and dz

1 ~0. They

determine the upper and the lower boundaries of

the region of existence of the planar state in the

U,d-plane. At U50, the upper branch reaches

d{
1 0ð Þ~L2. It ends when d{

1 ~0, i.e. for positive

u15cot21(2f) and for negative u25u12p.

(iii) U50: in the absence of an external voltage, the

planar state exists in the layers of thickness

d,L22L1. This result can be obtained from

equation (15), which in the limit uR0 gives

2d 2 +d (L 2 2L 1 )u co t u.0 and leads to

0,d,L22L1 since lim
u?0

u cot u~1. This result is
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in agreement with the analogous case obtained

Barbero and Barberi [2] for non-flexoelectric

nematics.

Figure 1 shows several representative results for

various sums of the flexoelectric coefficients and three

ratios between planar and homeotropic anchoring

strengths. In the case of a non-flexoelectric nematic,

the planar state appears for d and U from a closed

region in the U,d-plane. This region has a regular

shape, symmetric with respect to U50. The flexoelec-

tricity introduces an asymmetry since its linear

coupling with the electric field makes the voltages of

opposite signs non-equivalent. In the present case of

e.0, the flexoelectricity enhances the region of

existence of the planar state induced by the positive

voltage and diminishes the region corresponding to

the negative voltage. This effect is the more pro-

nounced the higher is the value of parameter f, i.e. the

stronger are the flexoelectric properties or the smaller

is the dielectric anisotropy. When DeR0, the range of

positive voltage favouring the planar state tends to

infinity. Figure 2 shows examples of the regions of

existence of the planar state for four values of De.

These regions are always restricted to closed

areas spreading over the large positive voltages when

DeR0.

In the above examples, the value of L2 is maintained

constant. If the planar anchoring strength increases, i.e.

if L1 becomes smaller, the planar structure occurs in a

larger region. (Additional calculations show that if W2

is enhanced, the planar structure is restricted to thinner

layers.) If the planar anchoring is rigid, the ranges of U

and d are the largest.

3.2. Stability of the homeotropic structure in the case of
a positive dielectric anisotropy

In analogy to the results reported by Barbero and

Barberi [2], one may suppose that if the electric field

strength parameter k is sufficiently large, the home-

otropic structure becomes stable and replaces the

distorted state. The coherence length, 1/k, correspond-

ing to this critical field is equal to (L1L2)21/2. Of course,

if the planar anchoring is rigid, the homeotropic state

cannot appear.

In this section, the influence of flexoelectricity on this

effect is studied. The stability of the homeotropic state

induced by the electric field is investigated by means of

the same approach as in the preceding section. In order

to obtain the truncated free energy function, the angle

q590u2h is introduced. It is measured between the

director and the z axis. Small distortions of the

homeotropic structure are characterized by q%1.

The linearized torque equation for the bulk has now

the form

d2q

dz2
{l2q~0, ð20Þ

Figure 1. Regions of stability of the planar state for De52 and
W251025 J m22. (a) W15261025 J m22, (b) W151024 J m22, (c)
W15‘. The values of e (in pC m21) are indicated for each curve.
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where l5v/d, v~U e0De=k33ð Þ1=2
~u
� ffiffiffi

b
p

and b5k33/k11.

The solution of this equation is q(z)5

C cosh(lz)+D sinh(lz), where C and D are constants.

The total free energy per unit area of the layer is given

by

G~
1

2
C2k33 lsc{gls2{1= bL1ð Þzc2

�

bL2ð Þ
� �

zCDk33 ls2{glsczsc= bL2ð Þ
� �

z
1

2
D2k33 lsc{gls2zs2

�

bL2ð Þ
� �

,

ð21Þ

where g~e k33e0Deð Þ{1=2
~f
� ffiffiffi

b
p

, s5sinh ld5sinh v,

c5cosh ld5cosh v and Li.0. This function possesses a

minimum at C50 and D50 (which denotes the home-

otropic state) if the two inequalities are satisfied:

{d2zdvb g L2zL1ð Þ{ L2{L1ð Þcoth v½ �
zv2b2 1{g2

� �

L1L2w0 ð22Þ

and

vbL2 g{coth vð Þ{dv0: ð23Þ

3.2.1. Analysis of condition (22). Inequality (22) has

two solutions of the same form as equation (17). The

solution for U.0 is

min dz
3 , d{

3

� �

vdvmax dz
3 , d{

3

� �

, ð24Þ

and that for U,0 reads

min dz
4 , d{

4

� �

vdvmax dz
4 , d{

4

� �

, ð25Þ

The limiting thicknesses in equations (24)–(25) are given

by

d+
i ~ {b+D1=2

� 	.

2að Þ ð26Þ

with a521, b5vb[g(L2+L1)2(L22L1)coth v],

c5v2b2(12g2)L1L2 and D5b224ac. In the general

case, the analysis of these formulae is difficult.

Nevertheless, the numerical results (which are

exemplified in the following) suggest that D.0 for

sufficiently high |U|. In the limit vR+‘, when coth v51,

the critical thicknesses d+
3 are

d{
3?~vbL1 gz1ð Þ ð27Þ

and

dz
3?~vbL2 g{1ð Þ: ð28Þ

In the limit vR2‘, when coth v521, the critical

thicknesses d+
4 are

dz
4?~vbL1 g{1ð Þ ð29Þ

and

d{
4?~vbL2 gz1ð Þ: ð30Þ

These formulae give the equations of oblique

asymptotes d(U). The solutions of equation (22)

determine the ranges (24) and (25) that are included

between halves of these asymptotes corresponding to

U.0 and U,0, respectively. For given L2 and L1, the

relationships between dz
3?, d{

3?, dz
4? and d{

4? depend on

the flexoelectric properties as well as on the dielectric

anisotropy involved in g.

(1) For weak flexoelectric properties, 0(g(1, for

positive voltage, the function dz
3? Uð Þ given by

equation (28) takes negative values. In conse-

quence, condition (22) is satisfied if the thickness

determined by equation (24) belongs to the range

0, vbL1 gz1ð Þð Þ, ð31Þ

which results from equations (27) and (14). For

U,0, the values of dz
4? Uð Þ given by equation (30)

are negative. Therefore the corresponding range

including the solution (25) is determined by

equations (14) and (29):

0, vbL1 g{1ð Þð Þ: ð32Þ

(2) For moderate flexoelectric properties, 1,g(

(L2+L1)/(L22L1), the asymptotes that determine

the positive values of thickness occur only for

U.0. The solutions of equation (22) are described

by equation (24) and included within the range

Figure 2. Regions of stability of the planar state for
W251025 J m22 and e510 pC m21 calculated for several
values of De indicated for each curve.
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vbL2 g{1ð Þ, vbL1 gz1ð Þð Þ: ð33Þ

If g5(L2+L1)/(L22L1), the range (33) shrinks to a

point and its limits given by equations (27)–(28)

interchange.

(3) For strong flexoelectric properties, g.(L2+L1)/

(L22L1), the range of thickness given by equa-

tion (24) is included in

vbL1 gz1ð Þ, vbL2 g{1ð Þð Þ: ð34Þ

3.2.2. Analysis of condition (23). The second condition,

expressed by the inequality (23), has the solution

dwvbL2 g{coth vð Þ:d5: ð35Þ

Two ranges of g can be distinguished.

(1) For moderate and strong flexoelectric properties,

g.1, for positive voltages, condition (23) is

satisfied if n.coth21 g. For UR‘, the thickness

d5(U) tends to the asymptote d5nbL2(g21),

identical with equation (28). For UR2‘, the

asymptote is d5nbL2(g+1) [identical with equa-

tion (30)] and takes negative values. Therefore,

condition (23) is certainly true for the thickness

that belongs to the range

vbL2 g{1ð Þ, ?ð Þ, ð36Þ

when U.0, and to the range

0, ?ð Þ, ð37Þ

when U,0 (since d.0).

(2) For weak flexoelectric properties, 0(g(1, both

asymptotes predict negative d5. In consequence,

condition (23) is satisfied in the range (0, ‘) at any

voltage.

3.2.3. Superposition of conditions (22) and (23). In

order to determine the range of stability of the

homeotropic state one must find superposition of

conditions (22)–(23), i.e. the superposition of their

solutions expressed by equations (24) and (35) or by

equations (25) and (35). The results can be recognized

by comparison of the slopes of asymptotes. They are

illustrated in the U,d-plane in figures 3 a and 3 b. The

boundaries of the regions of existence of the

homeotropic state tend to the asymptotes when UR‘

or dR‘. When L15L2, these boundaries coincide with

the asymptotes.

The above results can be systematized as follows:

(1) For a non-flexoelectric nematic, g50, the home-

otropic state appears if the thickness is smaller

than a critical value. Since this value is indepen-

dent of the sign of the voltage, the regions of

stability of the homeotropic state in the U,d-plane

are symmetrical with respect to U50.

(2) For weak flexoelectric properties, 0,g(1, flex-

oelectricity introduces an asymmetry with respect

to the sign of the bias voltage. Due to the positive

sign of e, the homeotropic state is favoured by the

positive voltage. The homeotropic state is stable

in thicker layers when subjected to U.0 than

when subjected to U,0. If the flexoelectric

properties are weak (or if the flexoelectric

nematic has large dielectric anisotropy), i.e. if

Figure 3. Regions of stability of the homeotropic state for
De52 and W251025 J m22. (a) W15261025 J m22, (b)
W151024 J m22. The values of e (in pC m21) are indicated
for each curve. The curves denoted by d3 and d4 result from
condition (22), which is satisfied below them (for e50 and
e510 pC m21) and in the regions surrounded by them (for
e513, 20, 30 and 40 pC m21). The curves denoted by d5 result
from condition (23), which is satisfied in the areas above the
curves. For e50 and e510 pC m21, the homeotropic state is
stable in the areas below the thick curves. For other values of
e, it is stable inside the regions limited by the thick curves.
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0ve11ze33ƒ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k33e0De
p

, the resulting ranges of d

are given by the product of equation (31) with

equation (36) and by the product of equation (32)

with equation (37). For the positive voltages one

obtains (0, nbL1(g+1)) and for the negative (0,

nbL1(g21)). This means that the homeotropic state

is stable in the regions of the U,d-plane included

between the limit d50 and the asymptotes

d~U e11ze33z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k33e0De
p� ��

W1 [for U.0, equa-

tion (27)] and d~U e11ze33{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k33e0De
p� ��

W1 [for

U,0, equation (29)]. In figures 3 a and 3 b, this

case is presented for e510 pC m21. If g51, the

homeotropic structure may appear only above the

positive critical voltage.

(3) For moderate flexoelectric properties, 1,g(

( L 2 + L 1 ) / ( L 2 2 L 1 ) , i .e. i f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k33e0De
p

ve11ze33ƒ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k33e0De
p

W1zW2ð Þ= W1{W2ð Þ,
the range of d arises as a product of equa-

tions (33) and (36), which yields (nbL2(g21),

nbL1(g+1)). Therefore the region of stability of

the homeotropic state in the U,d-plane is

included between the asymptotes given by

equation (27), d~U e11ze33z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k33e0De
p� ��

W1,

and by equation(28), d~U e11ze33{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k33e0De
p� ��

W2.

It narrows with increasing e11+e33 and disappears

when g5(L2+L1)/(L22L1). This case is repre-

sented by e520 pC m21 and 30 pC m21 in fig-

ure 3 a and by e513 pC m21 in figure 3 b.

The homeotropic state is stable in the region

limited by the branches of thick curves

denoted by d3. The layer thickness must exceed

a certain minimum which is very low when g is

close to 1.

(4) For strong flexoelectric properties, g.(L2+L1)/

(L22L1), (or if the parameter g is enhanced due

to small magnitude of dielectric anisotropy) i.e. if

e11ze33w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k33e0De
p

W1zW2ð Þ= W1{W2ð Þ, t h e

range of d results from the product of equa-

tions (34) and (36), which is an empty set. It

means that the inequalities (22)–(23) are contra-

dictory. The same applies to conditions (22)–(23).

The homeotropic state is therefore unstable. This

case is exemplified by e540 pC m21 in figure 3 a

and by e520 pC m21 in figure 3 b. The inequality,

which is given above to limit the sum e11+e33, can

be rewritten in the form

Dev e11ze33ð Þ2
.

k33e0

h i

W1{W2ð Þ= W1zW2ð Þ½ �2: ð38Þ

The right hand side of equation (38) reveals the

critical value of De below which the homeotropic

state becomes unstable. This implies that the

homeotropic state does not appear if De(0. This

conclusion is essential for the cases considered in

the next sections.

4. Negative dielectric anisotropy

In the case of a negative dielectric anisotropy, the

dielectric torque favours the planar structure. The

homeotropic state does not appear, which is implied

from equation (38).

When De,0, the bulk torque equation takes the form

d2h

dz2
{k2h~0, ð39Þ

where k5(U/d)(e0|De|/k11)1/2 and the sign ‘‘–’’ is due to

the negative sign of the dielectric anisotropy. Its

solution is given by h(z)5M cosh(kz)+N sinh(kz), where

M and N are constants. The truncated total free energy

per unit area of the layer is given by

G~
1

2
M2k11 ksczf ks2z1=L1{c2

�

L2

� �

zMNk11 ks2zf ksc{sc=L2

� �

z
1

2
N2k11 ksczf ks2{s2

�

L2

� �

,

ð40Þ

where s5sinh kd5sinh u, c5cosh kd5cosh u,

f5e(k11e0|De|)21/2 and u5U(e0|De|/k11)1/2. The stability

conditions lead to two inequalities:

{d2zdu f L2zL1ð Þz L2{L1ð Þcoth u½ �
zu2 1{f 2

� �

L1L2w0, ð41Þ

{dzuL2 coth uzfð Þw0: ð42Þ

The solution of the quadratic inequality (41) is given

by the formulae analogous to equations (24)–(26), i.e.

min dz
6 , d{

6

� �

vdvmax dz
6 , d{

6

� �

, for U.0, and

min dz
7 , d{

7

� �

vdvmax dz
7 , d{

7

� �

, for U,0. In the limit

uR+‘, when coth u51, the critical thicknesses d+
6 are

d{
6?~uL2 f z1ð Þ ð43Þ

and

dz
6?~uL1 f {1ð Þ: ð44Þ

In the limit uR2‘, when coth u521, the critical

thicknesses d+
7 are

dz
7?~uL1 f z1ð Þ ð45Þ

and

d{
7?~uL2 f {1ð Þ: ð46Þ
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These formulae give the equations of oblique asymp-

totes d(U).

The inequality (42) is satisfied if d,L2u(coth u+f);d8.

For UR‘, the critical thickness d8 tends to the

asymptote d5uL2(f+1), identical to equation (43). For

UR2‘, the asymptote is d5uL2(f21) which coincides

with equation (46).

As described in section 3.1, the parts of asymptotes

corresponding to positive d help to determine the

superposition of equations (41)–(42). The resulting

condition of stability of the planar state is identical

with the inequality (41). For 0(f(1, the region of

existence in the U,d-plane lies between d~d{
6 and d50

when U.0 and between d~d{
7 and d50 when U,0. If

f.1, the inequality (41) gives two branches of the curve

which limit the region of existence of the planar

structure in the U,d-plane.

Figure 4 a shows several representative results for the

finite planar anchoring strength. In figure 4 b, the case

of a rigid planar anchoring is illustrated. Various sums

of the flexoelectric coefficients are taken into account.

In the non-flexoelectric nematic, the planar state is

realized for any voltage. The critical thickness increases

with |U|. The weak flexoelectricity (f,1) enhances the

region of existence of the planar state induced by the

positive voltage and diminished the region correspond-

ing to the negative voltage (figure 4 a, e510 pC m21). If

the flexoelectric properties are sufficiently strong (f.1),

the planar state appears in some range of thickness

corresponding to given value of U (figure 4 a, e520, 30,

40 pC m21).

If the planar anchoring is rigid, L150, the planar

state may exist if the layer is thinner than some critical

value which depends on U (figure 4 b).

If the anchoring strengths on the planar and

homeotropic walls are identical, L15L2;L then the

planar state does not exist in the absence of the field.

However, applied voltage of any magnitude induces

the planar structure for the ranges of thickness

bounded by the asymptote d5uL(f+1) and d50 if

0(f(1 and by two asymptotes d5uL(f21) and

d5uL(f+1) if f.1.

5. Dielectrically compensated nematic

In the case of De50, an external electric field exerts

only flexoelectric torques. The homeotropic state does

not appear, according to equation (38). Structural

transitions occur only between the planar and dis-

torted states.

When De50, the bulk torque equation takes the

simple form d2h/dz250. Its solution is h(z)5Pz+Q,

where P and Q are constants. The truncated total free

energy per unit area of the layer is given by

G~P2 k11dzeUd{W2d2
� ��

2

zPQ eU{W2dð ÞzQ2 W1{W2ð Þ
�

2:
ð47Þ

The condition L2G/LQ2.0 is always satisfied in this

case. Therefore the stability condition takes the form of

the inequality

{d2W1W2zd k11zeUð Þ W1{W2ð Þz2eUW2½ �
{e2U2

w0: ð48Þ

The solution of this inequality is given in the form of

equation (16).

dz
9 vdvd{

9 , ð49Þ

Figure 4. Regions of stability of the planar state for De522
and W251025 J m22. (a) W15261025 J m22, (b) W15‘. The
values of e (in pC m21) are indicated for each curve. The
curves result from the condition (41). The planar state exists
below the curves (for e50 and e510 pC m21) and between the
branches of them (for e520, 30 and 40 pC m21).
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where dz
9 and d{

9 are given by formulae analogous to

equation (17). In the limit UR‘, the range of thick-

nesses which satisfy the inequality (49) is determined by

the asymptotes d5eU/W2 and d5eU/W1.

Figures 5 a and 5 b show several examples obtained

for finite and infinite planar anchoring strength,

respectively, and for various sums of the flexoelectric

coefficients. In the case of a non-flexoelectric nematic,

the planar state appearing for d,L22L1 is unaffected

by the voltage. If the nematic possesses the flexoelectric

properties, the planar state may exist in a certain range

of thickness at positive voltages and at negative voltages

of sufficiently small magnitude (figure 5 a). If the

anchoring strengths on the planar and homeotropic

walls are identical, W15W2, then dz
9 ~d{

9 , which

means that the planar state does not occur at any

voltage. If the planar anchoring is rigid, W15‘, the

planar state exists for thickness smaller than a critical

value dz
9 ~L2zeU=W2 (figure 5 b).

6. Examples of field-induced transitions in HAFN

layers

In the following, the behaviour of the HAFN layers

subjected to an electric field is illustrated by the results

of numerical simulations. An insulating nematic mate-

rial with elastic constants k1156.2 pN and k3358.6 pN

was considered. The anchoring strength was

W15261025 J m22 on the planar surface and

W251025 J m22 on the homeotropic surface. The

optical phase difference, DW, was used to characterize

the state of the layer. The homeotropic structure was

represented by DW50, the planar state by

DW52pd(ne2no)/l, whereas the distorted structure is

represented by an intermediate value,

DW~ 2p=lð Þ ned{
Ð d

0
neno

.

n2
e cos2 hzn2

o sin2 h
� �1=2

h i

dz
� 	

,

where ne51.672 and no51.520 are the extraordinary and

ordinary refractive indices, respectively, and the wave-

length is l5632.8 nm.

In the case of a positive dielectric anisotropy, there

are several possible sequences of states realized when

the positive voltage is increased from zero: distorted–

homeotropic, planar–distorted–homeotropic, distorted–

planar–distorted, distorted–planar–distorted–homeo-

tropic–distorted and distorted–homeotropic–distorted.

In the case of a negative dielectric anisotropy, the

analogous transitions are planar–distorted, distorted–

planar–distorted and distorted–planar. For sufficiently

thin layers and small f, the planar state may exist for

any U.0. Figure 6 shows three examples for De52 and

two examples for De522. The voltage ranges of the

planar and homeotropic states agree with the theoretical

predictions made in sections 3.1 and 3.2.

The horizontal sections of the plots positioned at

DW50 correspond to the homeotropic state and those

for which DW.0 are due to the planar state. Curves 1–3

of figure 6 represent a nematic possessing positive

dielectric anisotropy. Curve 1 shows the transition

between the planar and homeotropic states with

intermediate distorted hybrid states, possible in rather

thin layers. These states belong to the stability regions

depicted in figures 1 a and 3 a. Curve 2 corresponds to

the case of weak flexoelectric properties for which the

homeotropic state becomes stable above some critical

voltage due to prevailing dielectric interaction. If the

flexoelectric effect has moderate magnitude (curve 3)

the stability of the homeotropic state is limited to a

narrow voltage range. Both types of behaviour can be

deduced from figure 3 a. Curves 4 and 5 exemplify

the behaviour of a nematic with negative dielectric

Figure 5. Regions of stability of the planar state for De50
and W251025 J m22. (a) W15261025 J m22, (b) W15‘. The
values of e (in pC m21) are indicated for each curve. The
curves result from the condition (48). The planar state exists
below the line corresponding to e50 and between the branches
of the curves (for e.0).
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anisotropy, for which the homeotropic state does not

appear. In both cases, the planar state exists in some

voltage range which may be narrow (curve 4) or spread

towards large U (curve 5), as can be predicted from

figure 4 a.

In figures 7 a and 7 b, typical director distributions in

the distorted state are depicted by means of h(z/d) plots

for De52 and De522, respectively. The director

orientation in the bulk is influenced mainly by the

dielectric torque. The orientations at the boundaries are

a consequence of the flexoelectric, elastic and anchoring

surface torques, which are included in equations (5)–(6).

The unaffected hybrid structure is represented in

figures 7 a and 7 b by the nearly linear director profiles,

h(z/d), obtained for U50. If U,0, the senses of the

surface flexoelectric torques and anchoring torques

coincide. As a result, the director at the boundaries

approaches the easy axes directions, i.e. h(0)R0 and

h(d)Rp/2. The resulting structures are illustrated by the

profiles plotted for U521 V and U522 V. Differences

in the shapes of the profiles for De.0 (figure 7 a) and

for De,0 (figure 7 b) are caused by the bulk dielectric

torques. When U.0, the surface flexoelectric torques

and anchoring torques are opposite. In consequence the

director deviates from the easy axes. Figure 7 a shows

how this effect increases with the applied voltage (curves

for U51, 2, 3 and 4 V). For U51 and 2 V, i.e. below the

range of existence of the homeotropic state, the director

distributions approach the homeotropic state and are

qualitatively different from the structures occurring for

U53 and 4 V, i.e. above this range. The director

distributions are affected by the bulk dielectric torque

which in the vicinity of z50 co-operates with the

flexoelectric torque and maintains h<p/2 due to De.0.

A similar effect is illustrated in figure 7 b for De,0. The

director orientation tends to the planar state as shown

by the curve for 0.4 V. The curves for U53 and 4 V

show the director distribution occurring above the

range of existence of the planar state. The dielectric

torque enhances the action of the flexoelectric torque

and maintains the orientation h<0 in the neighbour-

hood of z5d.

Figure 6. Phase retardation in the HAFN layer as a function
of applied voltage; W15261025 J m22, W251025 J m22; curve
1: De52, e520 pC m21, d51 mm; curve 2: De52, e510 pC m21,
d52 mm; curve 3: De52, e530 pC m21, d55 mm, curve 4:
De522, e530 pC m21, d52 mm; curve 5: De522,
e520 pC m21, d55 mm.

Figure 7. Director distributions in the distorted state of the
HAFN layer: W15261025 J m22, W251025 J m22,
e530 pC m21; (a) De52, d55 mm; (b) De522, d52 mm. The
bias voltages (in volts) are indicated for each curve.
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7. Discussion

In summary, flexoelectric properties influence signifi-

cantly the existence of planar, homeotropic and

distorted states in a layer with hybrid surface alignment.

In particular, the homeotropic state is unstable if

flexoelectricity is sufficiently strong. The planar state

is favoured by the flexoelectric properties. If De.0, it

may be induced in much thicker layers than in the case

of a non-flexoelectric nematic. If De,0, the voltage

range, in which the planar structure exists, is shifted

towards the lower values.

In this paper, the anchoring strength on the planar

surface is assumed to be larger than that on the

homeotropic surface. The opposite relationship, i.e.

W1,W2, would give analogous properties of the HAFN

layer. The homeotropic structure would be stable in the

absence of the field and the planar structure would be

induced by sufficiently large voltage if De,0. Another

assumption made in this paper is the positive sum of the

flexoelectric coefficients. The negative sum would give

the same results but for opposite signs of voltages,

which is easily seen from equations (4)–(7).

The results presented in this paper are quantitatively

valid only for sufficiently pure nematics in which the

influence of the ionic space charge may be neglected.

Additional calculations were carried out in order to find

out how large ion content is acceptable, i.e. what values

of ion concentration, N, do not change the boundaries,

d(U), of the regions of stability of the homeotropic or

planar structures. The model of electrical properties of a

nematic sample described in previous papers [15, 16]

was used for this purpose. It was based on the weak

electrolyte model, taking into account dissociation and

recombination of ions. The mobilities of anions as well

as their diffusion coefficients were assumed to be greater

than those of cations. Two kinds of electrode contacts

were considered: well conducting and strongly blocking.

The ion concentration was of order 561018 m23. (The

effects induced by ions adsorbed on the electrodes,

described by Barbero et al. [17, 18], were ignored, since

the low ion content prevents the arising of enough

significant surface charge density.) The results show

that the discrepancy between perfectly insulating

nematics and weakly conducting nematics is negligible.

The data for e530 pC m21 presented in figures 3 a and

1 a can serve as an example. For d55 mm, the theoretical

voltages limiting the homeotropic state are 2.36 and

2.83 V. The simulated values are almost identical: 2.36

and 2.84 V for the conducting electrodes and 2.36 and

2.81 V for the strongly blocking contacts. The differ-

ences are slightly larger for d58 mm. For the conducting

electrodes, the calculated voltages are 3.73 and 4.58 V

instead of the theoretical values 3.78 and 4.53 V. In the

case of blocking contacts the differences have similar

magnitude, as the voltages are 3.75 and 4.50 V. For

d52 mm, the planar structure of the insulating layer is

stable between 0.61 and 0.93 V. In the case of a

conducting material, only the lower limit is slightly

changed and equals 0.62 V for both types of electrode.

The above values confirm that experiments carried out

with a highly purified nematic (characterized by the

specific resistance 1010–1011 V m) can be successfully

interpreted by the theory elaborated for the perfectly

insulating material. The discrepancies become unaccep-

table if N exceeds 1019 m23 since they reach 0.1 V for

561019 m23. Nevertheless, qualitative agreement

between the results for conducting and insulating

nematics is revealed by simulations performed for even

higher ion concentrations, N,1020 m23.

On the basis of the results presented in this paper, one

may propose a method of measurement of the sum

e5e11+e33. According to the above discussion, sufficient

purity of the nematic material is of great importance

because the ionic space charge may significantly change

the stability conditions. In principle, experimental

determination of voltages limiting the ranges of stability

of the homeotropic and planar states for several values

of thickness would yield data sufficient to fitting the

values of e, W1 and W2, provided the elastic constants

and the dielectric anisotropy are known. A wedge-like

sample could be useful. However, the fitting procedure

may turn out to be difficult or inaccurate. Therefore,

some other approaches can be proposed in particular

cases. They will be analysed below under the assump-

tion that e.0.

In the case of a positive dielectric anisotropy, one

may seek the planar structure. The rigid planar

anchoring (L150), ensuring the behaviour exemplified

in figure 1 c, would be convenient. The maximum

thickness at which the planar state is stable as well as

the voltage Ud corresponding to this thickness are

related by the condition d d{
1

� ��

du~0, where d{
1 is

given by equation (17). Solution of the equation

d d{
1

� ��

du~0 with respect to u gives the formula for

the flexoelectric parameter:

f ~ ud{sin ud cos udð Þ
�

sin2 ud , ð50Þ

where ud5Ud(e0De/k11)1/2. The value of W2 is not

necessary. This method is useful if the homeotropic

anchoring is rather weak and if the dielectric anisotropy

is small, since such parameters ensure the conveniently

large maximum thickness.

The homeotropic structure exists only if W1 is finite.

Its ranges of stability depend on all the three parameters

e, W1 and W2. Therefore, in order to find e, one has to

determine also W1 and W2. Both polarities of the
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external voltage should be used. The observation of the

boundaries of the homeotropic region in the wedge-like

sample can yield the slopes dd/dv of the asymptotes

(27)–(28) or asymptotes (27) and (29). The set of two

equations can be built: a15bL1(g+1) and a25bL2(g21)

if both slopes are positive or a15bL1(g+1) and

a25bL1(g21) if one of the slopes is negative. In the

former case, the third equation can be obtained. For

this purpose, the minimum voltage Um at which the

homeotropic state exists as well as the corresponding

thickness dm should be determined. These values are due

to the case D50 in equation (26) and therefore they are

connected by the relation

dm~b=2~vmb g L2zL1ð Þ{ L2{L1ð Þcoth vm½ �, ð51Þ

where vm5Um(e0De/k33)1/2. The flexoelectric parameter g

and the anchoring strengths W1 and W2 can be

calculated from the set of the three equations. This

approach is effective if vm is close to 1, since in the

opposite case, equation (51) does not differ significantly

from the combination of the previous two equations. If

one of the slopes is negative, the quantities dm and vm do

not exist and the third equation cannot be built. In such

a case, the knowledge of W1 or W2 is necessary.

In the case of a negative dielectric anisotropy, the

voltage ranges of existence of the planar structure are

determined by the asymptotes given by equations (43)–

(46). If the slopes of them can be determined

experimentally, the flexoelectric parameter f can be

found, provided that the anchoring strengths W1 and

W2 are known. Therefore the rigid planar anchoring

seems to be convenient.

Flexoelectric properties play an important role in the

principle of operation of ZBD displays [10, 11]. There

are several possible geometries of ZBD display. In each

geometry, switching between two stable director con-

figurations occurs. In the earliest version, one config-

uration is practically homeotropic, the other is

practically hybrid. All types of ZBD display rely on a

micron-scale grating surface. Elastic deformations aris-

ing close to this non-planar substrate cause a flexo-

electric polarization, which provides a crucial

contribution to the switching torques induced by bias

voltage pulses of suitable polarity. The grating surface

imposes a kind of periodic boundary condition, which

ensures bistable surface alignment [19]. A model

approach describing this geometry adopts the effective

boundary conditions, which can be expressed by a

surface energy term exhibiting two distinct energy

minima due to homeotropic and planar director

orientations [11]. The complex periodic boundary

conditions as well as their simplified model are

essentially different from the boundary conditions

existing in the HAFN layer considered in the present

paper. Therefore, the results of this paper do not apply

to the ZBD case.

Nevertheless, another application concerning display

devices may be considered. As the flexoelectric effects

are linear in electric field, flexoelectricity gives rise to

asymmetry of the layer behaviour with respect to the

zero voltage. Such asymmetry is evident from the DW(U)

dependence. The asymmetry is also manifested in the

electro-optical characteristics of the considered systems.

Such effects were observed experimentally [6, 7]. An
electro-optical display based on the HAFN layer with

De.0 exhibiting the effects described in this paper

would offer switching between the minimum transmis-

sion in the homeotropic state at positive voltage and the

maximum transmission in the distorted state at properly

chosen negative voltage. One may expect that such a

switching process would be faster than in other types of

displays, in which the switching to the bright state is
induced only by the action of the anchoring torques. In

the case of De,0, the maximum transmission could be

achieved in the planar state by suitable choice of the

thickness, whereas the dark state would require

properly chosen voltage to obtain suitable distorted

structure.
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Appendix

It can be shown that d2wd{
1 . Namely, the positive value

d{
1 ~b=2z b2{4ac

� �1=2
.

2 is smaller than b since 4ac is

positive:

d{
1 vb: ðA1Þ

The quantity b can be written as b5d22uL1(cot u2f).
Hence, d25b+uL1(cot u2f), which denotes that

d2wb, ðA2Þ

since from equation (18) one obtains cot u.2f for

positive d2. Superposition of equations (A1)–(A2) gives

d2wd{
1 .
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